反无人机:“低慢小”无人机融合探测的问题

发布者:华英发布时间:2022-06-06浏览次数:728


目前,融合探测的形式有:

1) 红外与可见光融合成像。这一技术不但使得探测系统能够适应白天和夜间的任务,而且能够同时保留可见光图像丰富的细节信息、色彩信息与红外图像的亮度信息,提升了探测的准确性。

2) 图像与超声波信息融合。这一技术类似于蝙蝠等生物在飞行时的目标探测原理,目前多用于无人机避障。

3) 图像与雷达的信息融合。这两者的融合模式,是雷达进行大范围地扫描搜索,发现目标后,运用相机对目标成像。这样可以在获得探测距离的同时,不失探测精度。其中的关键技术是雷达的目标探测与识别及其与相机之间快速、稳定的响应关系。

4) 图像与声音融合。声阵列对无人机的探测在五百米范围内有良好效果。作为一种辅助探测手段,声探测的融入能够大大提高近距探测的响应速度和精度。

融合探测模型

多传感器信息融合是多层次的,可分为数据级融合、特征级融合和策略级融合。数据级融合主要解决直接从多个传感器获得的数据之间在空间上的配准和时间上的同步问题、网络通信协议等。特征级融合是指多个传感器探测所得的目标信息(如坐标、速度等)之间的融合,主要处理特征级的互证和冲突问题。策略级融合是处理各探测器在与决策直接相关的信息方面的互证与冲突。多传感器数据融合的主要基础方法有:基于贝叶斯推理的方法、基于加权平均的方法、基于Dempster-Shafer(DS)证据理论的方法。随着人工智能的进一步发展,也逐渐形成了基于聚类分析的数据融合方法、基于模糊逻辑的数据融合方法、基于博弈论的数据融合方法以及基于神经网络与深度学习的数据融合方法等。

反制无人机的传统流程:”探测—识别—跟踪”

传统的“探测—识别—跟踪”流程,是建立在目标可被感知的信号强烈,探测难度低于识别难度,识别难度低于跟踪难度的基础之上的。考虑到“低慢小”无人机自身及所处环境的特殊性,“多目标跟踪—识别— 筛选”成为破解“低慢小”无人机探测难点的一种新思路。在这一思路下,探测网络所接受到的信息可以尽可能地扩大,并可以融合其它先验信息(如地图、天气、网络状况等),对于捕捉到的目标信息进行无条件地跟踪,通过跟踪所得的数据积累,进行目标筛选。可行的方案有:

1) 基于运动模型识别的跟踪探测。例如,将一段时间内匀速直线运动与变速运动的切换次数作为特征,可以区分大多数鸟类和无人机。

2) 基于深度学习的跟踪探测。虽然当前所使用的训练数据集多为包含清晰目标、背景为简洁的蓝天或机场的各类飞机图片,与实际探测中可能采集到的目标无人机图像相差较大,因而模型的泛化能力存在问题,但是却验证了基于学习的识别探测的可行性。随着真实数据的不断累积,模型的可靠性也将越来越高。

3) 基于声音、无线电、雷达信号的跟踪探测。影响声音特征的因素包括:无人机类型、无人机运动状态、无人机与探测器的相对位置。因此,在近距范围内采用声音识别跟踪探测,不但能够有效定位目标无人机,还能够获得更多与反制相关的信息。雷达可用于识别“低慢小”无人机的特征主要是由旋翼等无人机自身内部的运动造成的微多普勒特征。

融合语义地图的跟踪识别探测。这一方法将探测目标的位置信息与标注了特定语义的地图进行匹配,通过模拟人结合地图依据一定的规则进行识别,实现对目标的识别探测。这一方法需要解决语义地图和规则集的设计问题。

综合来看,先跟踪后识别的思路,虽然表面上牺牲了系统响应时间,但是考虑到“低慢小”无人机本身运动速度有限,其所执行的任务多数也都要求低速或悬停,因而仍然有可能有效终止威胁。如何平衡虚警率和漏检率、响应时间与识别精度,是一个关键问题。

将“低慢小”无人机探测问题放在“低慢小”无人机管控与反制的整体视角下审视,可以发现,“低慢小”无人机探测问题是可解的。“低慢小”无人机的“隐身” 特性客观存在,但这同时使得其所执行任务的烈度降低。因此,从终止“低慢小”无人机从事的破坏活动这一目标出发,不仅传统探测技术不能直接应用在“低慢小”无人机探测上,而且传统探测性能指标也没有必要直接套用。本文在全面梳理“低慢小”无人机探测方法的基础上,对各种探测原理进行分析比对,结合市场信息、实验研究、仿真验证等信息,总结出解决“低慢小”无人机探测问题的三个发展趋势:移动探测、融合探测和跟踪探测。

文章来源:搜狐网 若有来源标注错误或侵犯了您的合法权益,请与本网站管理员联系(3073611@qq.com),我们将及时更正、删除,谢谢。


Baidu
map